
Java I/O

• Java I/O (Input and Output) is used to process the input and produce the output.

• Java uses the concept of a stream to make I/O operation fast. The java.io package contains all the

classes required for input and output operations.

• We can perform file handling in Java by Java I/O API.

Stream

A stream is a sequence of data. In Java, a stream is composed of bytes. It's called a stream because it is

like a stream of water that continues to flow.

OutputStream vs InputStream

OutputStream

Java application uses an output stream to write data to a destination it may be a file, an array,

peripheral device or socket.

InputStream

Java application uses an input stream to read data from a source it may be a file, an array,

peripheral device or socket.

Let's understand the working of Java OutputStream and InputStream by the figure given below.

OutputStream class

OutputStream class is an abstract class. It is the superclass of all classes representing an output stream of bytes. An

output stream accepts output bytes and sends them to some sink.

Useful methods of OutputStream

Method Description

1) public void write(int)throws IOException is used to write a byte to the current output stream.

2) public void write(byte[])throws IOException is used to write an array of byte to the current output

stream.

3) public void flush()throws IOException flushes the current output stream.

4) public void close()throws IOException is used to close the current output stream.

InputStream class

InputStream class is an abstract class. It is the superclass of all classes representing an input stream of
bytes.

Useful methods of InputStream

Method Description

1) public abstract int read()throws IOException reads the next byte of data from the input stream. It

returns -1 at the end of the file.

2) public int available()throws IOException returns an estimate of the number of bytes that can be

read from the current input stream.

3) public void close()throws IOException is used to close the current input stream.

InputStream Hierarchy

Java FileOutputStream Class

➢ Java FileOutputStream is an output stream used for writing data to a file.

➢ If you have to write primitive values into a file, use

FileOutputStream class.

➢ You can write byte-oriented as well as character-oriented data through FileOutputStream

class.

➢ But, for character-oriented data, it is preferred to use FileWriter than FileOutputStream.

FileOutputStream class declaration

public class FileOutputStream extends OutputStream

FileOutputStream class methods

Java FileOutputStream Example 1: write byte

import java.io.FileOutputStream;

public class FileOutputStreamExample { public static

void main(String args[]){

try{

FileOutputStream fout=new FileOutputStream("D:\\testout.txt"); fout.write(65);

fout.close(); System.out.println("success...");

}catch(Exception e){System.out.println(e);}

}

}

Output:

Success...

void write(byte[] ary) It is used to write ary.length bytes from the byte array to the file

output stream.

void write(byte[] ary, int off, int

len)

It is used to write len bytes from the byte array starting at offset off

to the file output stream.

void write(int b) It is used to write the specified byte to the file output stream.

FileChannel getChannel() It is used to return the file channel object associated with the file

output stream.

FileDescriptor getFD() It is used to return the file descriptor associated with the stream.

void close() It is used to closes the file output stream.

Method Description

protected void finalize() It is used to clean up the connection with the file output stream.

https://www.javatpoint.com/array-in-java

The content of a text file testout.txt is set with the data A. A

Java FileOutputStream example 2: write string import

java.io.FileOutputStream;

public class FileOutputStreamExample { public static

void main(String args[]){

try{

FileOutputStream fout=new FileOutputStream("D:\\testout.txt"); String s="Welcome

to javaTpoint.";

byte b[]=s.getBytes();//converting string into byte array fout.write(b);

fout.close();

System.out.println("success...");

}catch(Exception e){System.out.println(e);}

}

}

Output:

Success...

The content of a text file testout.txt is set with the data Welcome to java. testout.txt

Welcome to java.

Java FileInputStream Class

➢ Java FileInputStream class obtains input bytes from a file.

➢ It is used for reading byte-oriented data (streams of raw bytes) such as image data, audio,

video etc.

➢ You can also read character-stream data.

➢ But, for reading streams of characters, it is recommended to use FileReader class.

Java FileInputStream class declaration

public class FileInputStream extends InputStream

Java FileInputStream class methods:

Method Description

int available() It is used to return the estimated number of bytes that can be read from the

input stream.

int read() It is used to read the byte of data from the input stream.

int read(byte[] b) It is used to read up to b.length bytes of data from the input stream.

int read(byte[] b, int off, int

len)

It is used to read up to len bytes of data from the input stream.

long skip(long x) It is used to skip over and discards x bytes of data from the input stream.

FileChannel getChannel() It is used to return the unique FileChannel object associated with the file

input stream.

FileDescriptor getFD() It is used to return the FileDescriptor object.

protected void finalize() It is used to ensure that the close method is call when there is no more

reference to the file input stream.

void close() It is used to closes the stream.

https://www.javatpoint.com/java-filedescriptor-class
https://www.javatpoint.com/java-8-stream

Java FileInputStream example 1: read single character

import java.io.FileInputStream; public class

DataStreamExample {

public static void main(String args[]){ try{

FileInputStream fin=new FileInputStream("D:\\testout.txt"); int i=fin.read();

System.out.print((char)i);

fin.close();

}catch(Exception e){System.out.println(e);}

}

}

Note: Before running the code, a text file named as "testout.txt" is required to be created. In this file, we are

having following content: Welcome to java

Welcome to java

After executing the above program, you will get a single character from the file which is 87 (in byte form). To see

the text, you need to convert it into character.

Output:

W

Java FileInputStream example 2: read all characters

import java.io.FileInputStream; public class

DataStreamExample {

public static void main(String args[]){ try{

FileInputStream fin=new FileInputStream("D:\\testout.txt"); int i=0;

while((i=fin.read())!=-1){

System.out.print((char)i);

}

fin.close();

}catch(Exception e){System.out.println(e);}

}

}

Output: Welcome to java

Java File Class

➢ The File class is an abstract representation of file and directory pathname.

➢ A pathname can be either absolute or relative.

➢ The File class have several methods for working with directories and files such as creating new directories or

files, deleting and renaming directories or files, listing the contents of a directory etc.

Java File Example 1

import java.io.*;

public class FileDemo {

public static void main(String[] args) {

try {

File file = new File("javaFile123.txt"); if

(file.createNewFile()) {

System.out.println("New File is created!");

} else {

System.out.println("File already exists.");

}

} catch (IOException e)

{

e.printStackTrace();

}

}

}

Output:

New File is created!

Java - RandomAccessFile

➢ This class is used for reading and writing to random access file.

➢ A random access file behaves like a large array of bytes.

➢ There is a cursor implied to the array called file pointer, by moving the cursor we do the read write

operations.

➢ If end-of-file is reached before the desired number of byte has been read than EOFException is thrown.

It is a type of IOException.

Method

Modifier

and Type

Method Method

void close() It closes this random access file stream and releases any

system resources associated with the stream.

FileChannel getChannel() It returns the unique FileChannel object

associated with this file.

int readInt() It reads a signed 32-bit integer from this file.

String readUTF() It reads in a string from this file.

void seek(long pos) It sets the file-pointer offset, measured from the

beginning of this file, at which the next read or write

occurs.

void writeDouble(double v) It converts the double argument to a long using the

doubleToLongBits method in class Double, and then

writes that long value to the file as an eight-byte quantity,

high byte first.

void writeFloat(float v) It converts the float argument to an int using the

floatToIntBits method in class Float, and then writes that

int value to the file as a four-byte quantity, high byte first.

void write(int b) It writes the specified byte to this file.

int read() It reads a byte of data from this file.

long length() It returns the length of this file.

void seek(long pos) It sets the file-pointer offset, measured from the beginning

of this file, at which the next read or write occurs.

https://www.javatpoint.com/data-transfer-between-channels

Example

import java.io.IOException; import

java.io.RandomAccessFile;

public class RandomAccessFileExample

{

static final String FILEPATH ="myFile.txt"; public

static void main(String[] args)

{ try {

System.out.println(new String(readFromFile(FILEPATH, 0, 18)));

writeToFile(FILEPATH, "I love my country and my people", 31);

 } catch (IOException e) { e.printStackTrace();

}

}

private static byte[] readFromFile(String filePath, int position, int size) throws

IOException {

RandomAccessFile file = new RandomAccessFile(filePath, "r");

file.seek(position);

byte[] bytes = new byte[size];

file.read(bytes);

file.close();

return bytes;

}

private static void writeToFile(String filePath, String data, int position) throws

IOException {

RandomAccessFile file = new RandomAccessFile(filePath, "rw");

file.seek(position);

file.write(data.getBytes());

file.close();

}

}

The myFile.TXT contains text "This class is used for reading and writing to random access file."

after running the program it will contains

This class is used for reading I love my country and my people.

