
Unit I

Introduction to Java: Introduction to Object Oriented Paradigm, Concepts of OOP, Applications

of OOP, History of Java, Java Features, JVM, Program Structure. Variables, Primitive Data

Types, Constants, Operators, Expressions, Precedence rules and Associativity, Primitive type

conversion and Casting, Control Structures.

Object Oriented Paradigm :

Introduction to Object Oriented Programming:

 Object Oriented programming (OOP) is a programming paradigm that relies on the concept

of classes and objects. Objects collaborate by sending messages to each other. An object is an

entity that possess both state (called properties/attributes, in program defined as variables) and

behaviour (the functionalities, in program defined as functions)

Principles of Object-Oriented Programming

1. Class
2. Object
3. Abstraction
4. Encapsulation
5. Inheritance
6. Polymorphism

1. Class:
 A class is a logical entity. It is blueprint from which individual objects are created. It
represents the set of properties or methods that are common to all objects of one type.

2. Object:
 Objects are the key for Object Oriented Programming. An Object is called the instance for
a class (instantiation /initialization / memory allocation for a class) An Object possess two
characteristics

1. State (Properties)
2. Behaviour (functions)

I. An Object stores its state in fields (Variables) and exposes its behaviour through methods.

II. Methods operate for functionalities which uses the state of object internally and serves as
primary mechanism for object to object communication.

Example for Class and Object

Let’s take familiar entities Student and Teacher

First identify what are the properties and behaviour of these entities

Student entity

State / properties include

1. Roll Number (String)

2. Name (String)

3. Year

4. Age (integer)

5. Marks (integer)

6. Branch (String)

7. Result (String)

Behaviour / methods include

1. listenClasses()

2. onlineExam()

3. playGames()

let’s take a function writeExam

onlineExam()

{

// Use the properties, year and branch to retrieve respective online bits from data

base

// allow the student to select their answers

// generate the result and update student’s property marks.

}

From the above function we can clearly observe that methods perform some actions

using any properties if needed (like year and branch) and updates and property if needed (like

marks).

3. Abstraction:

 Abstraction is the process of hiding complexity (internal implementation) and showing

essential information. For example, if you want to drive a car, you don’t need to know about its

internal workings. The same is true of Java classes. You can hide internal implementation details

by using abstract classes or interfaces. On the abstract level, you only need to define the method

signatures (name and parameter list) and let other classes implement these interfaces in their own

way.

4. Encapsulation:

 Binding the state and behaviour together into a single unit is known as encapsulation. In

encapsulation, the variables / data of a class is hidden from any other class and can be accessed

only through any member function of own class in which they are declared.

For example, if we write a single C program for defining state and behaviour of different entities

(say student and teacher) it will be like

 main ()

{

 // following represent entity student properties

 char [30] Rollnum;

 char [30] name;

 int marks;

 // following represent entity teacher properties

 char [30] name;

 int empId;

 char [20] PFnum;

}

 // functions for entity student include

 listenClasses()

{

 …. // implementation

}

writeExams()

{

… // implementation

}

 // functionalities for entity teacher, include

 examEvaluation()

 {

 ….. // implementation

}

 postAttendence()

 {

 …. // implementation

}

In this approach maintaining, all entities state and behaviour together, programmer may

willingly or unwillingly can access one entity variables under another entity functionalities.

With the help of classes we can eliminate such scenarios and bind properties and its related

functions into single unit class also known as Encapsulation

class Student

{

 // following represent entity student properties

 char [30] Rollnum;

 char [30] name;

 int marks;

 // functions for entity student include

 listenClasses()

{

 …. // implementation

}

writeExams()

{

… // implementation

}

} // end of class Student.

Class Teacher

{

 // following represent entity teacher properties

 char [30] name;

 int empId;

 char [20] PFnum;

}

 // functions for entity student include

 listenClasses()

{

 …. // implementation

}

writeExams()

{

… // implementation

}

 // functionalities for entity teacher, include

 examEvaluation()

 {

 ….. // implementation

}

 postAttendence()

 {

 …. // implementation

}

} //end of class Teacher.

Applications of Object Oriented Programming

User interface design such as windows, menu.

Real Time Systems

Simulation and Modeling

Object oriented databases

AI and Expert System

Neural Networks and parallel programming

Decision support and office automation systems etc.

History of Java:

Java is invented by James Gosling, Patrick Naughton, Chris Warth, Ed Frank, and Mike

Sheridan at Sun Microsystems. in 1991. Most of the Java characteristics are inherited from C and

C++ language. It was first named as Greentalk later called as “Oak” and was finally named as

“Java” in 1995.

Other languages have the problem that they are designed to compile the code for a specific

platform. To overcome this, Gosling and others started working on a portable and platform-

independent language, this leads to the creation of Java.

Java had an extreme effect on the Internet by the innovation of a new type of networked

program called the Applet. An applet is a Java program that is designed to be transmitted over

the internet and executed by the web browser that is Java-compatible. Applets are the small

program that is used to display data provided by the server, handle user input, provide a simple

functions.

JDK :

JDK is a software development environment used for making applets and Java

applications. The full form of JDK is Java Development Kit. Java developers can use it on

Windows, macOS, Solaris, and Linux. JDK helps to code and run Java programs.

JRE :

JRE is a software which is designed to provide runtime environment for java applications.

It contains the class libraries, loader class, and JVM. In simple terms, if you want to run Java

program you need JRE. If you are not a programmer, you don't need to install JDK, but just JRE to

run Java programs. As all JDK versions comes bundled with Java Runtime Environment, so you do

not need to download and install the JRE separately in your PC. The full form of JRE is Java

Runtime Environment.

Evaluation of Java Versions

Java SE Version

Version Number

Release Date

JDK 1.0
(Oak)

1.0

January 1996

JDK 1.1

1.1

February 1997

J2SE 1.2

(Playground)

1.2

December 1998

J2SE 1.3

(Kestrel)

1.3

May 2000

J2SE 1.4

(Merlin)

1.4

February 2002

J2SE 5.0

(Tiger)

1.5

September 2004

Java SE 6

(Mustang)

1.6

December 2006

Java SE 7

(Dolphin)

1.7

July 2011

Java SE 8

1.8

March 2014

Java SE 9

9

September, 21st 2017

Java SE 10

10

March, 20th 2018

Java SE 11

11

September, 25th 2018

Java SE 12

12

March, 19th 2019

Java SE 13
13

September, 17th 2019

Java SE 14

14

March, 17th 2020

Java SE 15

15

September, 15th 2020

Java SE 16

16

March, 16th 2021

Java SE 17

17

Expected on Sept. 2021

Among these versions only Java 8 and Java 11 have LTS (Long Term Service). Java 8 is the default

and recommended version to download

what is LTS ?

A Java LTS (long-term support) release is a version of Java that will remain the industry

standard for several years. Java 8 which was released in 2014, will continue to receive updates

until 2020, and extended support will end by 2025. This gives plenty of OS vendors like Microsoft

and Red Hat the time to repackage their releases with Java 8, time for application developers to

update their applications to take full advantage of Java 8 features. At this time, the only other

Java version that have LTS service is Java 11

Java Features

 1. Simple:

The Java programming language is easy to learn. Java is similar to C/C++ but it removes the

drawbacks and complexities of C/C++ like pointers and multiple inheritances. So one having

knowledge on these languages will find Java familiar and easy to learn.

2. Object-Oriented programming language:

Java is a object-oriented programming language. It has all OOP features such as

• Object

• Class

• Inheritance

• Polymorphism

• Abstraction

• Encapsulation

3. Robust:

Java uses strong memory management techniques so that there is no improper memory

assignment during the running of a program. The unreferenced objects still being in the memory

led to the wastage of space. Java’s garbage collector solves the problem it will delete the objects

which are not used or not referenced anymore by the program.

4. Secure:

The Java platform is designed with security features built into the language, You never hear

about viruses attacking Java applications. Memory access via pointer and performing pointer

arithmetic is unsafe, so Java has no support for pointers to provide more security.

5. High Performance:

Java is an interpreted language, so it cannot be as fast as a compiled language like C or C++. But,

Java achieves high performance with the use of just-in-time compiler.

6. Java is Multithreaded:

With this feature, Java supports “Multitasking”. Multitasking is when multiple jobs are executed

simultaneously. Multitasking improves CPU and Main Memory Utilization.

7. Distributed

In the era of Internet, applications need to run in distributed environment. This is possible in java

applications since the programmer can use the TCP/IP protocols in the code. Java offers Remote

Method Invocation (RMI) package to implement such interfaces in a multi-user application.

8. Java is Platform Independence:

unlike other programming languages such as C, C++ etc which are compiled into platform specific

machines. Java follows write-once, run-anywhere principle.

On compilation Java program is compiled into bytecode. This bytecode is platform independent

and can be run on any machine.

JVM (Java Virtual Machine)

JVM (Java Virtual Machine) is a specification that provides runtime environment in

which java bytecode can be executed. JVMs are platform dependent. The JVM will be

provided separately for different machine languages(OS)

functionalities performed by the JVM

Loads code

Verifies code

Executes code

Provides runtime environment

JVM Architecture

Let's understand the internal architecture of JVM. It contains classloader, memory area,

execution engine etc.

1) Classloader

Classloader is a subsystem of JVM which is used to load class files. Whenever we run the

java program, it is loaded first by the classloader. There are three built-in classloaders in

Java.

1. Bootstrap ClassLoader: This is the first classloader which is the super class of Extension

classloader. It loads the rt.jar file which contains all class files of Java Standard Edition like

java.lang package classes, java.net package classes, java.util package classes, java.io

package classes, java.sql package classes etc.

2. Extension ClassLoader: This is the child classloader of Bootstrap and parent classloader of

System classloader. It loades the jar files located inside $JAVA_HOME/jre/lib/ext directory.

3. System/Application ClassLoader: This is the child classloader of Extension classloader. It

loads the classfiles from classpath. By default, classpath is set to current directory. It is also

known as Application classloader.

2) Class(Method) Area

Class(Method) Area stores per-class structures such as the runtime constant pool, field and

method data, the code for methods.

3) Heap

It is the runtime data area in which objects are allocated.

4) Stack

Java Stack stores frames. It holds local variables and partial results.

Each thread has a private JVM stack, created at the same time as thread.

A new frame is created each time a method is invoked. A frame is destroyed when its

method invocation completes.

5) Program Counter Register

PC (program counter) register contains the address of the Java virtual machine instruction

currently being executed.

6) Native Method Stack

It contains all the native methods used in the application.

7) Execution Engine

The execution engine is the Central Component of the java virtual machine(JVM). It

communicates with various memory areas of the JVM. Each thread of a running application

is a distinct instance of the virtual machine’s execution engine. Execution engine executes

the byte code which is assigned to the run time data areas in JVM via class loader. Java

Class files are executed by the execution engine.

Execution Engine contains three main components for executing Java Classes. They are:

1. Interpreter: It reads the byte code and interprets(convert) into the machine

code(native code) and executes them in a sequential manner.

2. Just-In-Time(JIT) compiler: It is used to improve the performance. JIT compiles

parts of the byte code that have similar functionality at the same time, and hence

reduces the amount of time needed for compilation. Here, the term "compiler"

refers to a translator from the instruction set of a Java virtual machine (JVM) to the

instruction set of a specific CPU.

3. Profiler: This is a tool which is the part of JIT Compiler is responsible to monitor the

java bytecode constructs and operations at the JVM level.

4. Garbage Collector: This is a program in java that manages the memory

automatically. It is a daemon thread which always runs in the background. This

basically frees up the heap memory by destroying unreachable methods.

8) Java Native Interface

Java Native Interface (JNI) is a framework which provides an interface to communicate with

another application written in another language like C, C++, Assembly etc. Java uses JNI

framework to send output to the Console or interact with OS libraries.

Data Types

Data types represent the different values to be stored in the variable. In java, there are

two types of data types:

 Primitive data types

 Non-primitive data type

https://www.geeksforgeeks.org/jvm-works-jvm-architecture/
https://www.geeksforgeeks.org/compiler-vs-interpreter-2/
https://www.geeksforgeeks.org/garbage-collection-java/
https://www.geeksforgeeks.org/daemon-thread-java/

Note: char default value ‘\u0000’ indicates nul

Variables and Data Types in Java

Variable is a reference for memory location. There are three types of variables in java -

local, instance and static.

Types of Variable :

There are three types of variables in java:

o local variable

o instance variable

o static variable

1) Local Variable

A variable which is declared inside the method is called local variable. The scope and

lifetime are limited to the method itself. the arguments of a function will also be treated as local

variables to that method

void m(int a, int b)

{

int sum = a+b // here a,b and c all three are local variables to function/method – m

}

2) Instance Variable

A variable which is declared inside the class but outside the method, is called instance

variable. It is not declared as static. They are known as instance variables because every instance

of the class (object) contains a copy of these variables. The lifetime of these variables is the same

as the lifetime of the object to which it belongs. Object once created do not exist for ever. They

are destroyed by the garbage collector of Java when there are no more reference to that object.

3) Static variable

A variable that is declared as static is called static variable. It cannot be local variable. It is

a variable which belongs to the class and not to object(instance). These variables will be

initialized first, before the initialization of any instance variables.

A single copy to be shared by all instances of the class

A static variable can be accessed directly by the class name and doesn’t need any object

Example to understand the types of variables in java

class A

{

int data=50; //instance variable

static int m=100; //static variable

void method()

{

int n=90; //local variable

}

} //end of class A

Constants in Java

A constant is a variable which cannot have its value changed after declaration. It uses the

'final' keyword.

Syntax

final dataType variableName = value; final int a =10;

static final dataType variableName = value; static final int b = 40;

Operators in java

Operator in java is a symbol that is used to perform operation over the operands. For

example: +, -, *, / etc.

There are many types of operators in java which are given below:

o Unary Operator,

o Arithmetic Operator,

o shift Operator,

o Relational Operator,

o Bitwise Operator,

o Logical Operator,

o Ternary Operator and

o Assignment Operator

Expressions

Expressions are essential building blocks of any Java program, usually created to produce

a new value, although sometimes an expression simply assigns a value to a variable.

Expressions can be

built using values, variables, operators and method calls.

Types of Expressions -

While an expression frequently produces a result, it doesn't always. An expression can be

Those that produce a value, i.e. the result of (1 + 1)

Those that assign a variable, for example (v = 10)

Java Type casting and Type conversion

Implicit type casting/Automatic Type Conversion -

Also known as widening conversion takes place when two data types can be automatically

converted without any loss of data. This happens

when:

The two data types are compatible.

When we assign value of a smaller data type to a bigger data type.

For Example,

 in java the numeric data types are compatible with each other but no automatic

conversion is supported from numeric type to char (or) 15boolean. Also, char and 15boolean are

not

compatible with each other.

type conversion/Implicit type casting example

int a; short b = 50;

a = b; // conversion from b to a, smaller type to larger

Narrowing or Explicit Conversion -

If we want to assign a value of larger data type to a smaller data type we perform explicit type

casting or narrowing. This is useful for incompatible data types where automatic conversion

cannot be done.

Here, target-type specifies the desired type to convert the specified value to.

example,

int a = 10;

byte b;

b = (byte) a; //we are explicitly mentioning to convert a of type int to byte and then assign to b

Control Flow Statements

the control flow statements let you control the flow of the execution in your program. Java
programming language, supports decision making, branching, looping, and adding conditional
blocks.

The control flow statements can be categorized into

1. Decision Making Statements
2. Looping Statements
3. Branching Statements

Decision Making Statements

decision-making statements are used when we have to change the flow of execution based on a
condition

There are three types of decision-making statements.

1. if statement
2. if-else statement

3. The switch statement

1. if statement
if statement is the most used decision-making statement in the java programming

language.

syntax :

if(condition)
{
 // code to be executed
}

2. if-else statement

it is similar to the if statement, here we will add a block of statements to be executed
when condition fails, which will be written under else case.

 If the value of the condition statement is true, then if block will be executed, otherwise
the else block will be executed.

if (condition statement) {
 // code to be executed
}
else {
 // code to be executed
}

3. Nested if- else
In Nested if – else we can add one if-else block in another if-else block. In following we
are adding an inner if-else block in the outer if block.

if(condition 1)
{
code to be executed
}
else
{
 if(condition 2)
{
code to be executed -
 }
else
{
code to be executed
 }
}

4. switch statement
In the switch statement, there could be several execution paths, each block the control

will be transferred based on case value

switch(week)
 {
 case 1:
 printf("Monday");
 break;
 case 2:
 printf("Tuesday");
 break;
 case 3:
 printf("Wednesday");
 break;
 case 4:
 printf("Thursday");
 break;
 case 5:
 printf("Friday");
 break;
 case 6:
 printf("Saturday");
 break;
 case 7:
 printf("Sunday");
 break;
 default:
 printf("Invalid input! Please enter week number between 1-7.");
 }

In the above example switch will receive an integer value in variable week, based on week value
corresponding case statements will be executed. if value doesn’t match with any case value the
default will be executed.

Looping Statements

In looping statements, we are making a decision and executing the block of code multiple
times. Until the condition is true, we are looping over the block of the code.

Each time we will check if the result of our decision statement is true or not, until and
unless the result is true, we will execute the block of the code.

We can classify the lopping statements as follows:

1. for loop
2. while loop
3. do-while loop

1. for loop

In the for loop, we are going to check the value of the condition statement. If the value is
true, the block of the code will be executed. After the successful execution of the code block,
control again goes to the condition statement. Now, if the value is true, again the block of
the code will be executed. Also, we are declaring one variable which stores the number of
iteration. Each time the for loop runs, the value of i will be increased or decreased.

for(init variable declaration ; condition ; increment /decrement){

// code to be executed

}

2. while loop

In a while loop, we do apply the initialization, condition statement and an increment or
decrement operator like the for loop but the syntax differs

init variable declaration
while (condition){

// code to be executed
// increment or decrement statement

}

Example :

int i = 1;
 while(i<=5) {

 System.out.println(i);
 i++;

 }
 System.out.print(“End of while loop”);

In the first line of the code, we are initializing a variable i of integer type with the value 1. In the
next statement, we are checking the condition, if the value of the condition statement is true,
the block of code will be executed.

When looking at the block of the code, at the end of the block you can see an increment
operator, the value of i will increase by one, and the control goes to the condition statement. If
the value of i is less than the 5, the block of code executes repeatedly.
When the value of the condition statement is false, the control goes to the next line of code
after the while loop.

3. do -while loop

In the while loop, we are checking the condition statement first and then executing the
block of code. But in the do-while loop, we are first executing the block of code and then
checking the condition. If the value of the condition statement is true, the control goes at the
starting of the code block, and the whole block of the code will be executed. Once the value of
the condition statement is false, the control goes to the next line of code after the do-while loop.

init variable declaration
do {
 //code to be executed
} while (condition statement);

The difference between the while and do-while loop is, in a while loop, we check the condition
and executes the block of code, but in the do-while loop, we first execute the block of code and
then check the condition.

Branching Statements

1. break statement
2. continue statement
3. return statement

1. break statement

break statement terminates the control flow. Usually, we do use the break statement to
terminate the flow of for, while and do-while loop.

for(int i = 0; i<=5; i++)
{

 if(i == 4) {
 break;
 }

System.out.println(i);
 }

The above code will print number from 1 to 3 and when i value becomes 4, the break

statement will be executed and terminates from loop

2. continue statement
continue statement skips the current iteration of the for, while and do-while loop. The

simple continue statement skips the iteration of the loop and sends the control back to the
condition statement. The code after the continue statement will not be executed for the current
iteration

for(int i = 0; i<=5; i++)
{

 if(i == 4) {
 continue;
 }

System.out.print(i);
 }

 The above loop will print numbers from 1 to 3, when i equals 4, the following statements
will be skipped and controller will go back to the condition to execute next iteration of
statements

It will print 1 2 4 5

4. return statement

In general return statement will be last line of the method. The return statement exits
from the current method and control flow return to the line from which the method was
invoked.

void m1()
{

int a = 5;
int b = 6;
int sum;
sum = add(a,b);
System.out.println(“result is ”+ sum)

}

int add(int I, int j)
{
 int s = i+j;
 return s;
}

In the above example when add function is called, controller will reach the add function, after
executing statements of add, the return statement will return the controller back to calling
method, using return we can even return values to calling method.

